Characterization and bioavailability of Vitamin B\textsubscript{12} compound from a Japanese piled-black tea, Batabata-Cha.

Hiromi Kittaka-Katsural, Shuhei Ebara2, Fumio Watanabe3 and Yoshihisa Nakano2

1: Hiroshima Prefectural Women’s University, 1-1-71 Ujinahigashi, Minami-ku, Hiroshima, 734-8558, Japan, 2: Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka, 599-8531, Japan, 3: Kochi Women’s University, 5-15 Eikokuji-cho, Kochi-shi, Kochi, 780-8515, Japan

Summary

A Japanese piled-black tea, Batabata-cha, contained considerable amounts of vitamin B\textsubscript{12} (B\textsubscript{12}) [1.2 \textmu g/100 g dry tea leaves, 2 ng/100 mL tea leaf extract (used as a tea beverage)]. A B\textsubscript{12} compound was partially purified from the tea leaves and characterized. The silica gel 60 TLC and reversed-phase HPLC patterns of the partially purified B\textsubscript{12} compound were identical to those of authentic CN-B\textsubscript{12}, but not those of B\textsubscript{12} analogues inactive for humans.

When 20-week-old B\textsubscript{12}-deficient rats which excreted substantial amounts of methylmalonic acid (250 mg/day) in urine (as an index of B\textsubscript{12} deficiency) were fed the tea leaf extract (50 mL/day; 1 ng of B\textsubscript{12}) for 6 weeks, urinary methylmalonic acid excretion of the tea leaf extract-supplemented rats decreased significantly relative to authentic CN-B\textsubscript{12}-supplemented rats. The hepatic B\textsubscript{12} content was about twofold greater in the tea leaf extract-supplemented rats than in the CN-B\textsubscript{12}-supplemented rats. The results indicate that the Japanese piled-black tea, Batabata-cha, contains considerable amounts of B\textsubscript{12} bioavailable in mammals.

Keywords

piled-black tea, batabata-cha, vitamin B\textsubscript{12}, vitamin B\textsubscript{12}-deficiency, urinary methylmalonate excretion

Introduction

Piled-black teas have been heat-treated by steam or roast, piled, and fermented by certain bacteria. Various piled-black teas are found only in Asian countries. The piled-black teas may contain some vitamins and/or biofactors synthesized by the concomitant bacteria.

Vitamin B\textsubscript{12} (B\textsubscript{12}) is synthesized only in certain bacteria. Usual dietary sources of B\textsubscript{12} are known to be animal products, but not plant products. If the piled-black teas contain considerable amounts of B\textsubscript{12}, the black tea would contribute to human B\textsubscript{12} needs, especially for vegetarians.

Here we described the partially purification and characterization of a B\textsubscript{12} compound from a Japanese piled-black tea, Batabata-cha, and also investigated the effects on B\textsubscript{12} status of feeding the black tea extract used as a tea beverage to B\textsubscript{12}-deficient rats.

Materials and Methods

Extraction of B\textsubscript{12}. The dried tea leaves and extract (used as a tea beverage) of Batabata-cha were kindly provided by Asahi co. (Toyama-prefecture, Japan). The tea leaves were powdered by the use of a food mill. Total B\textsubscript{12} was extracted from the tea
leave powder and extract by boiling with KCN at acidic pH as described previously.

Assay of B$_{12}$. Total B$_{12}$ was assayed by the microbiological method with *Lactobacillus leichmannii* ATCC7830 and a B$_{12}$ assay medium (Nissui, Tokyo, Japan) according to the manufacturer's instructions as described previously.

Partially Purification of a B$_{12}$ compound from the tea leaves. About 400 g of Batabata-cha leaves were powdered by the use of the food mill and added to 4 L of 0.25 mol/L acetate buffer, pH 4.8, containing 0.2% (w/v) KCN. The suspension was boiled for 60 min and then centrifuged for 10 min at 5000 r.p.m. The supernatant was used as a B$_{12}$ extract for the following experiment. About 1 kg of Amberlite XAD-4 (Organo Co. Tokyo, Japan) resin, after had washed with 10 L of methanol and then equilibrated with distilled water, was added to the B$_{12}$ extract and stirred for 3 h at room temperature in the dark. A B$_{12}$ compound was eluted with 1 L of 80% (w/v) methanol and concentrated under reduced pressure. The concentrated solution was put on a column (28×70mm) of COSMOSIL 140C18-OPN, which was washed with ethanol and then equilibrated with distilled water. A B$_{12}$ compound was eluted with 100 mL of a linear gradient of 0-25%(v/v) ethanol. The B$_{12}$-active fractions were pooled, concentrated under reduced pressure, and used as a partially purified B$_{12}$ compound.

Analytical TLC and HPLC. The partially purified B$_{12}$ compound and authentic CN-B$_{12}$ was put on silica gel-60 TLC sheets, which were developed with solvent I; 2-propanol/NH$_4$OH (28%)/distilled water (7:1:2 v/v), or with solvent II; 1-butanol/2-propanol/distilled water (10:7:10 v/v). The TLC sheets were dried and cut into small pieces (5 mm) by scissors. The B$_{12}$ compounds were extracted from each TLC piece with 80% (v/v) methanol, evaporated to dryness under reduced pressure, and dissolved in a small amount of distilled water. B$_{12}$ was assayed in these fractions by the microbiological method.

The partially purified B$_{12}$ compound was also analyzed by HPLC using a Shimadzu HPLC apparatus (CLC-6A pump, SPD-6A spectrophotometer, CTO-6A column oven, C-R6A chromatopac). The partially purified B$_{12}$ compound and authentic CN-B$_{12}$ were put on a reversed-phase HPLC column (Wakosil- II 5C18RS, φ 4.6×150mm; particle size = 5 μm) equilibrated with a 20% (v/v) methanol solution containing 1% (v/v) acetic acid at 35°C. The flow rate was 1 mL/min. The B$_{12}$ compounds were isocratically eluted and collected at 1 mL. These fractions were evaporated to dryness and dissolved in a small amount of distilled water. B$_{12}$ was assayed in these fractions by the microbiological method.

Animals and diets. Fifteen male weanling Wister rats (20-week-old), born to 14-week-old parents fed on a B$_{12}$-deficient diet for 8 weeks, were used. The B$_{12}$-deficient diet contained (g/kg): 400 soyabean protein (Fuji Oil Ltd, Osaka, Japan), 438 anhydrous glucose (Nacalai Tesque Ltd, Kyoto, Japan), 100 soyabean oil (Nacalai Tesque Ltd), 50 salt mixture, 5 DL-methionine (Nacalai Tesque Ltd), 5 B$_{12}$-free vitamin mixture and 2 choline chloride (Nacalai Tesque Ltd), as described previously. The 3-week-old weanling rats were housed individual metabolism cages at 24°C in a room with a 12 h light-dark cycle. They were given free access to the B$_{12}$-deficient diet and tap water for 17 weeks. All experimental procedures involving laboratory animals were approved by the Animal Care and Use Committee of Osaka Prefecture University.

Feeding the tea leave extract in B$_{12}$-deficient rats. The effects of feeding the tea leave extract on urinary methylmalonic acid level in the B$_{12}$-deficient rats were studied.
The 20-week-old B$_{12}$-deficient rats (4 rats/group) were given free access to 50 mL of water, authentic CN-B$_{12}$ (1 ng/50 mL) solution, and tea leaf extract (1 ng of B$_{12}$/50 mL).

Urinary methylmalonic acid assay. The urine of the B$_{12}$-deficient, CN-B$_{12}$-supplemented, and tea leaf extract-supplemented rats was sampled for 24 h in individual metabolism cages at day 0, 1, 3, 7, 12, 15, 42 during the experiments. Urinary methylmalonic acid was assayed by HPLC as described previously.3

Extraction of B$_{12}$ from rat liver. After food was withheld from rats overnight, the rats were killed by decapitation under diethyl ether anesthesia. Liver were washed with a chilled 9 g NaCl/L solution, weighed, and stored at -80°C until analyzed. A portion (1 g) of the liver was cut into small pieces using a razor blade and homogenized in 10 times volume of 10 mmol/L acetate buffer, pH 4.8. B$_{12}$ was extracted from the liver homogenate by boiling with KCN at acidic pH.4

Results and Discussion

A Japanese piled-black tea, Batabata-cha, is available at Toyama-prefecture, Japan. Batabata-cha contained 1.2 μg of B$_{12}$ per 100 g dry tea leaves and 2 ng of B$_{12}$ per 100 mL tea extract used as a tea beverage.

To clarify whether the B$_{12}$ found in the tea leaves is true B$_{12}$ or inactive B$_{12}$ analogues, a B$_{12}$ compound was partially purified from the tea leaves and characterized. The R_f values (0.22 and 0.54 in solvent I and II, respectively, on silica gel 60 TLC) of B$_{12}$ activity of the partially purified compound were identical to the values of that of authentic CN-B$_{12}$ (Fig. 1), of which the retention time (17.5 min by the reversed-phase HPLC) was also identical to that of the partially purified compound (Fig. 2). These results strongly suggest that the B$_{12}$ compound partially purified from the tea leaves is true B$_{12}$, but not B$_{12}$ analogues inactive for humans.

To evaluate whether the B$_{12}$ compound found in the tea leaves is absorbed in the mammalian intestine and accumulated in the liver, feeding experiments of the tea leaf extract to the 20-week-old B$_{12}$-deficient rats were conducted. When the 20-week-old B$_{12}$-deficient rats which excreted substantial amounts of methylmalonic acid (250 mg/day) in urine (as an index of B$_{12}$ deficiency) were given the tea leaf extract (50 ml/day, 1 ng of B$_{12}$) for 6 weeks, urinary methylmalonic acid excretion of the tea leaf extract-supplemented rats decreased significantly relative to both B$_{12}$-deficient (control)}
and CN-B₁₂-supplemented rats (Fig. 3).

The hepatic B₁₂ content was about twofold greater in the tea leaf extract-supplemented rats than in both control and CN-B₁₂-supplemented rats (Table 1); there is no significant difference in the hepatic B₁₂ contents between control and CN-B₁₂-supplemented rats. The fact that the B₁₂ compound found in the tea leaf extract showed a better bioavailability in the B₁₂-deficient rats relative to authentic CN-B₁₂ may imply that most of B₁₂ found in the tea leaves are existed as B₁₂ coenzymes.

![Fig. 3 Effect of feeding the Batabata-cha extract on urinary MMA (an index of vitamin B₁₂ deficiency) of vitamin B₁₂-deficient rats.](image)

Table 1 Hepatic vitamin B₁₂ contents of the vitamin B₁₂-deficient rats fed the CN-B₁₂ and Batabata-cha extract

<table>
<thead>
<tr>
<th>Groups</th>
<th>vitamin B₁₂ contents (pg/g wet tissue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>746±97</td>
</tr>
<tr>
<td>CN-B₁₂-supplemented</td>
<td>768±129 *</td>
</tr>
<tr>
<td>Batabata-cha extract</td>
<td>1473±252 *</td>
</tr>
<tr>
<td>Batabata-cha extract</td>
<td>1473±252 *</td>
</tr>
</tbody>
</table>

*The mean values within a column are significantly different, P< 0.01.

Although the methylmalonic acidemia in the B₁₂-deficient rats could not be completely recovered by the 6-week-feeding of the tea leaf extract, the significant increase in the hepatic B₁₂ content of the tea leaf extract-supplemented rats indicate that the feeding of the tea leaf extract considerably improved B₁₂ status in the B₁₂-deficient rats.

These results presented here indicate that the Japanese piled-black tea, Batabata-cha, contains considerable amounts of B₁₂ bioavailable in mammals.

References